
A Fresh Graduate’s Guide to Software Development Tools and Technologies

Chapter

 Code Versioning

CHAPTER AUTHORS

Damien, Florian Catala

Koh Cher Guan

Soh Yuan Chin

Teo Wai Ming Steve

14

Software Development Tools and Technologies

2

Ch14: Code Versioning

3

CONTENTS

1 Introduction to Version Control Systems ... 4

1.1 What is a version control system? ... 4

1.2 Why use a version control system? ... 4

1.3 A brief history of version control systems .. 5

2 Common Version Control Systems Terminologies ... 6

3 Centralized Version Control Systems ... 8

3.1 Overview ... 8

3.2 workflow ... 9

4 Distributed Version Control Systems .. 10

4.1 New terminologies ... 10

4.2 Overview .. 10

4.3 Workflow ... 11

4.4 Flexible organization .. 13

4.4.1 Peer-to-Peer .. 13

4.4.2 Shared Push .. 14

4.4.3 Pull-Only ... 14

5 Centralized versus Distributed Version Control Systems ... 17

5.1 CVCS ... 17

5.2 DVCS .. 17

6 Advanced Topic: Branching and merging .. 18

6.1 What is Branching? .. 18

6.2 What is Merging? .. 18

6.3 Branching and Merging in Mercurial ... 18

6.3.1 Clones .. 19

6.3.2 Bookmarks .. 20

6.3.3 Named Branches ... 21

6.3.4 Anonymous Branches ... 22

7 Conclusion ... 24

8 Bibliography ... 25

Software Development Tools and Technologies

4

1 INTRODUCTION TO VERSION CONTROL SYSTEMS

1.1 What is a version control system?

Version Control, also known as Revision Control, is the management of changes to computer files,
often source code files. It is most commonly used in software development, where a team of
people may change the same files. Every change made to the file is tracked, along with who
made the change and a summary of the change, which can consist of why the change was made,
what the changes are and/or any other information that are relevant to the change. Version
Control is an important aspect of Software Configuration Management (SCM).

Version Control Systems (VCS) are software implementations that simplify and in some
cases automate the process of Version Control. They can be broadly categorized into two
categories; centralized and distributed.

Revision Control Systems and Version Control Systems mean the same thing. However, when
the words version and revision are used on their own, revision refers to the internal versions,
known only to the VCS and developers, while version refers to the version of the software
known to the public. For example, SomeSoftware Version 2.0 is the version released to the
public and it is revision 1337 in the VCS.

1.2 Why use a version control system?

Many of us are probably already doing version control without realizing it. For example, while
working on a project inside a folder named HelloWorld, we have probably saved multiple copies
of the folder as HelloWorldStable, HelloWorldOld or something along these lines. The more
meticulous ones among us would have given it more meaningful names that contain a date or
version, such as HelloWorld_13032011 or HelloWorldVersion2. In addition, we would have
probably done it using the classic Copy and Paste, followed by a Rename.

However, in the above scenarios, we ourselves perform the role of the VCS. We waste time
thinking of what file names to use and from time to time we forget to save an important
milestone. It is not uncommon to see HelloWorldV3.java in one folder and another
HelloWorldV3.java in another folder, each with different file contents to add to the confusion.

“With another project, …, I found I had no less than 3 different versions of the code lying

around on my hard drive. It took some investigation with diff in order to find out which one

was the most current.” – Fraser Hess, Developer of Harmony
1

The situation is even worse in team projects. Do you find yourselves emailing each other every
time you make some changes? This problem becomes harder to manage as more people get
involved in the project. To compound this problem further, what happens if there is a serious
problem with one of the changes? Short of the person admitting his mistake, the only way to
find out who is responsible for it would be to search through all the emails and their attached
files and check each attachment individually.

With a proper VCS, all of the above problems can be alleviated. Projects, small or large, need a
VCS to track changes, account for changes, allow multiple people to work at the same time and
allow the developers to revert to an older working version if their latest version is problematic.
In addition, Version Control Systems have the ability to duplicate your code into a separate area
so you can work on it in isolation without affecting the current code. This is known as
branching. When you are done with your work, you can then merge these changes from your
branch into the current code. A VCS handles the tedious task of managing code changes for you
so you have more time to do what is important; developing software.

1
 http://sweeterrhythm.com

Ch14: Code Versioning

5

In summary, a VCS has the following features:

 Accountability

 Branching and Merging

 Change Tracking

 Concurrency (Multiple users can work on the same project)

 Reversibility

1.3 A brief history of version control systems

We will take a look at a brief history of Version Control Systems (VCS). By looking at the
background of VCS, we can better understand how much VCS has changed over the years, the
motivation of development behind each VCS and the evolution from centralized systems to
distributed systems.

Version Control Systems have come a long way since it was first introduced. One of the earliest
VCS was the Source Code Control System (SCCS), developed by Marc J. Rochkind in 1972. It only
works locally and only on individual files. Although merging was not supported, its file storage
technique was used by later VCS and is key to advanced merging and versioning techniques. It
was later written for Unix and it became the de-facto VCS for Unix until Revision Control System
(RCS) merged.

RCS, developed in 1982 by Walter F. Tichy was an improved version of SCCS; it supported
binary files and has better storage performance. Like SCCS, it was itself replaced by Concurrent
Versions System (CVS) in 1986.

CVS was written by Dick Grune as a set of RCS scripts to operate on multiple files. It was re-
released in 1990 as a client-server VCS, making it the first Centralized Version Control System
(CVCS). However, it had many flaws, most notably, the lack of an atomic commit. To tackle this,
Subversion (SVN) was written and sponsored by CollabNet in 2000. Its main goal, "CVS done
right" was central to its purpose, and as it introduced many improvements over CVS, which
made it the de-facto CVCS used nowadays.

Distributed Version Control Systems (DVCS) emerged in the 1990s with the commercial release
of Sun Workshop TeamWare by Sun MicroSystems. It was the first DVCS and it was used
internally by Sun for the development of the Solaris and Java platforms. It incorporated a lot of
advanced features not found in earlier VCS, such as the local repository. DVCS took off and in
1998, BitKeeper was released by BitMover Inc, whose CEO Larry McVoy previously designed
TeamWare.

BitKeeper was built upon many TeamWare concepts. It was most notably used as the SCM tool
of the Linux Kernel project from 2002 to 2005. It was used by project founder Linus Torvalds
himself, despite it being a proprietary product. It withdrew from the Linux Kernel project
controversially.

To fill up the void left behind after BitKeeper's exit, two new DVCS was initiated around the
same time, Git and Mercurial. Linus Torvalds wrote Git in 2005 within 2 months. His motivation
for Git was to have it support a BitKeeper workflow instead of the CVS workflow which he
disliked, while having high performance and strong safety measures against corruption of
source code. It was used in the Linux kernel project after its release.

Likewise, Matt Mackall developed Mercurial with similar aims and motivation as that of Git.
Written in Python, it focused on cross-platform interoperability and user-friendliness.

Till this day, many developers are still continuing to adopt DVCS over CVCS. This may be
attributed to several reasons, which will be seen later.

Software Development Tools and Technologies

6

Figure 1: Timeline of the various VCS

2 COMMON VERSION CONTROL SYSTEMS TERMINOLOGIES

Entities

Repository

(Repo)

The database where the files and historical data are stored, including the
author of the changes and the summary of each change. Commonly called repo
for short.

Working
Copy

The local directory of your files.

Trunk
The primary location for code in the repo. Remember that a Version Control
System allows for branching, the trunk is the one that usually contains the
stable code that everyone is working on. Also called master, main or default.

Branch
A secondary location of the code in the repo. A repo can have multiple
branches but usually only one trunk.

Revision
A revision is the set of changes whenever a check in is performed. Each
revision is given a number. See Figure 2.

Actions

Check In
(Commit)

Uploads a changed file or a set of changed files to the repository.
Commonly known as commit.

Check Out Downloads a file or a set of files from the repository (for the first time).

Add
Tells the Version Control System to track a file, a set of files or a
directory. These tracked files do not go into the repository until the next
check in.

Ch14: Code Versioning

7

Update
Synchronize the files in your working copy with the latest files from the
repository. This is normally performed after a check out.

Revert
Discards all changes in the working copy and use a specified revision
from the repository. See Figure 3.

Branch The act of creating a branch. See Figure 4.

Merge
Apply the changes from one or more file(s) to another. For example, you
can merge code from a branch into the trunk. See Figure 5.

Resolve
A conflict may occur when multiple changes to a file contradict one
another. When that happens, the process of fixing these conflicts and
checking in the fixed file is called resolve.

Tag Label a revision for easy reference. See Figure 6.

Figure 2: New revisions are created whenever a commit is made

Figure 3: Reverting after making mistakes

Figure 4: Branching

Main Trunkr1 r2 r3 r4 r5 r6

commit commit commit commit commit commit

Repo

Steve

1. checkout

Steve

2. revert

r1 r1

works on code and makes
some mistakes…

Main Trunk

Branch

Branching
Point

Repo

Software Development Tools and Technologies

8

Figure 5: Merging after branching

Figure 6: Tagging Revision 1337 as 1.0

3 CENTRALIZED VERSION CONTROL SYSTEMS

3.1 Overview

In a Centralized Version Control System (CVCS), there is a single centralized repository, which
everyone uses to check in, check out and basically perform all other Version Control Systems-
related operations.

In Figure 7, we have a scenario that consists of 4 people working on a single project. It can be
clearly seen that all 4 of them do not interact with one another. Instead, all 4 of them interact
with just the centralized repository. In this scenario, the repository can be thought of as a sort of
boss that everyone must report to. If Steve makes a change and he wants to share it with
everyone, he must first commit his changes into the repository.

Main Trunk

Branch

Branching
Point

Repo

merge

Merging
Point

Repository

Let’s release revision 1337!
Let’s release changeset f1337eb! Let’s release version 1.0!vs

r1 r2 r3

1.0

Ch14: Code Versioning

9

Figure 7: CVCS Overview

Some of the available CVCS available today are Subversion2 (SVN), Concurrent Versions System3
(CVS) and Perforce4.

3.2 workflow

In a CVCS, every contributor must work off the master centralized repository.

Figure 8: CVCS Workflow

Let us take a look at each step of Figure 8, which outlines a basic CVCS workflow. Firstly, Steve
creates a new file called Hello.java and adds it using the Version Control System. At this point
in time, the VCS will start tracking Hello.java but the file is not in his repository yet. Next,
Steve commits his changes (in this case, the only change was to add Hello.java). At this point
in time, the repository will have Hello.java inside.

2
 http://subversion.tigris.org

3
 http://www.nongnu.org/cvs

4
 http://www.perforce.com

Repo
(Boss)

Steve

Damien Eugene

Charlie

Repo

Steve’s
Working

Copy

1. add
Hello.java

2. commit 3. checkout 4. update 5. update

Eugene’s
Working

Copy

+
a whole bunch
of files

Damien’s
Working

Copy

+
Hello.java

Charlie’s
Working

Copy

+
Hello.java

6. commit

Charlie’s
Working

Copy

change
Hello.java

7. update

Eugene’s
Working

Copy

change
Hello.java

r1 r1 r1 r1 r2 r2

Steve Eugene Damien Charlie Charlie Eugene

Software Development Tools and Technologies

10

Next, Eugene, who is new to the team, wants to start working on the project. To get the project
files onto his computer, he first has to do a checkout. Upon completion of the checkout process,
Eugene will then have all the project files in his working copy on his computer.

Following that, Damien and Charlie, who are both existing team members, want to synchronize
the code in their working copy with the latest code from the repository. In order to do that, they
execute the update action, which will bring their working copy up to date with the repository.
In this case, they both discover they have one new file, Hello.java.

Charlie then makes some changes to Hello.java after discovering a bug with it. When he is
done with his changes, he commits it. Next, Eugene, who performs an update after Charlie is
done, receives the updated Hello.java. The changes from Charlie’s Hello.java are
automatically merged into Eugene’s Hello.java to bring it up to date.

At this point in time, only Charlie and Eugene have the latest version of the code. In order for
Steve and Damien to have the updated code as well, they should perform an update again.

4 DISTRIBUTED VERSION CONTROL SYSTEMS

4.1 New terminologies

Entities

Local Repository A repository that is on the local computer.

Remote
Repository

A repository that is hosted on a server. Also known as hosted
repository.

Changeset

Distributed Version Control Systems tend to use the word
changeset in place of revision. A revision has a revision number.
Likewise, each changeset has a changeset ID, which is used to
uniquely identify the changeset.

Actions

Clone
Makes a copy of an existing repository, normally a remote
repository.

Push
Sends a (committed) change to another repository, normally a
remote repository. Authorization is needed to push changes
most of the time.

Pull
Grab a (committed) change from another repository, normally a
remote repository.

4.2 Overview

In a Distributed Version Control System (DVCS), every developer has his or her own local
repository. In addition, a remote repository is used for code hosting and sharing. It is perfectly
fine to work with just the local repository on a project, without ever having to create a remote
repository. This is vastly different from the centralized model in which there is only one central

Ch14: Code Versioning

11

repository that everyone must base his or her work on. Sometimes the word decentralized is
used instead of distributed.

In addition, there can be any number of remote repositories where people share their changes
by pulling and pushing to one another. DVCS have no forced hierarchy. You can decide if you
want a “centralized” repository or if you want to have multiple repositories for different
purposes (see Section 4.4).

In Figure 9, we have 4 developers, each with their own local repository as well as a remote
repository which all of them can pull from and push to. In addition, one of the developers,
Charlie, has another remote repository, which he uses to host his code privately without sharing
with others.

Figure 9: DVCS Overview

Some of the available DVCS available today are Git5, Mercurial6 and Bazaar7.

4.3 Workflow

Unlike a CVCS, the workflow in a DVCS can be very different between two projects. This is due to
the lack of a centralized repository. As a result, there can be various ways to organize a project
(see Section 4.4). However, regardless of how the workflow is in a DVCS, there are a few
concepts that every DVCS user must know.

Firstly, unlike centralized systems, distributed systems have the addition of a local repository.
This means that all the contributors will have their own repository on their computers. As a
result, most of the operations such as add, revert, update and commit are all done locally,
without the need to interact with a remote repository which is hosted on some server.

Secondly, instead of checking out to start working on a project, users must first clone the project.
Cloning basically creates a copy of a repository (see Figure 10). For existing projects,
contributors will usually clone a copy of the remote repository into their own computer.

5
 http://git-scm.com

6
 http://mercurial.selenic.com

7
 http://bazaar.canonical.com

Remote
Repo

Steve Steve’s
Local Repo

Damien Damien’s
Local Repo

CharlieCharlie’s
Local Repo

EugeneEugene’s
Local Repo

Remote
Repo

Software Development Tools and Technologies

12

Figure 10: Cloning a repository

If all the Version Control System operations can be done locally, how do we actually send our
changes to a remote repository? The answer comes in the form of pulling and pushing. Pushing
means to upload your changes to another repository, usually a remote one, while pulling means
to download the changes from another repository, again, usually a remote one.

In a typical scenario, a contributor will first work on just his or her local repository, without the
need for an Internet connection. After numerous commits, the contributor is finally happy with
his or her work and ready to share it with others. At this point in time, the contributor will push
his or her code to his or her remote repository (see Figure 11). The rest of his team, eagerly
waiting for this awesome new code, will proceed to pull it from the contributor’s repository.
Subsequently, if the team members are all happy with this new code, they will merge it into
their own code and then push to their own repository (see Figure 12).

Figure 11: Steve (contributor) working on his changes

Project
Remote

Repo

Steve’s
Local Repo

cloning creates a copy

Steve’s
Remote

Repo

2. contributor pushes
code when he’s done

Steve

1. numerous
commits, reverts and
other operations! Steve’s

Local Repo

Ch14: Code Versioning

13

Figure 12: Charlie pulls Steve's changes

Notice that Charlie does not push directly to Steve’s remote repository, or vice versa. Although
this is possible (see Section 4.4.2), most of the time only the contributor has push rights to his or
her own remote repository. In addition, it is important to note that a pull does not merge the
changes into the repository, unlike a centralized system’s update. In order to merge it in, you
have to perform a pull, followed by a merge. Most DVCS come with commands that combine
them both for ease of use.

4.4 Flexible organization

DVCS is more flexible than CVCS in how the members of a team and their code should interact.
For example, you can assign a location to be the “central” repository, so it works just like a CVCS,
or you can make it peer-to-peer, where everyone is equal. The following sub-sections illustrate
some possible structures a DVCS might have.

4.4.1 Peer-to-Peer

In Figure 13, we have a peer-to-peer system. As seen from the diagram, all of the project
members are peers and are able to share their changes to and from one another. Assuming that
only the owner is allowed to push to his or her own remote repository, we will have a model
where everyone is able to pull changes from one another without affecting one another’s code.
This is usually the case as allowing others to push to your own remote repository can result in
problems, especially if they push bad code into your repository. This model is most commonly
used in open source projects.

Steve’s
Remote

Repo

1. team member
pulls in Steve’s
changes

Charlie Charlie’s
Local Repo

Charlie’s
Remote

Repo

2. team member
merges in Steve’s

changes and pushes
to his own repository

Software Development Tools and Technologies

14

Figure 13: Peer-to-Peer

4.4.2 Shared Push

In Figure 14, we have a shared push model. In a shared push model, all the project contributors
are given permission to push to the repository. Notice that there is only one remote repository.
In fact, this is essentially the same as a CVCS with one exception, the addition of local
repositories.

Figure 14: Shared Push

4.4.3 Pull-Only

Figure 15 shows a pull-only model. In a pull-only model, only a selected few are allowed to push
into the “main” repository. In this case, only Damien is authorized to push to Team’s Remote
Repo. The rest of the contributors are only allowed to pull from the “main” repository, work on
it and then push their changes into their own remote repository. In such a scenario, Damien is

Steve Steve’s
Local Repo

Damien Damien’s
Local Repo

CharlieCharlie’s
Local Repo

EugeneEugene’s
Local Repo

Charlie's
Remote

Repo

Steve’s
Remote

Repo

Damien’s
Remote

Repo

Eugene’s
Remote

Repo

Team PnP
Remote

Repo

Steve’s
Local Repo

Damien’s
Local Repo

Charlie’s
Local Repo

Steve Damien Charlie

Ch14: Code Versioning

15

also known as a lieutenant. This model allows for him to pull as required. For example, if Steve
fixed a bug with his latest changes, while Charlie introduced a bug, Damien can choose to pull
only from Steve. This model can be scaled up further (see Figure 16). This model is being
employed in the Linux project.

Figure 15: Pull-only model

Team’s
Remote

Repo

Steve’s
Local Repo

Damien’s
Local Repo

Charlie’s
Local Repo

Steve

Damien

CharlieSteve’s
Remote Repo

Charlie’s
Remote Repo

push and pull

pull onlypull only

pull only
pull only

Software Development Tools and Technologies

16

Figure 16: Scaled up pull-only model

As we can see, there are many ways to organize your code and team hierarchy using a DVCS.
Instead of adapting to the DVCS workflow, you can make it adapt to your needs instead.

Logic

Local
Repo

Local
Repo

Local
Repo

Steve

Damien

CharlieRemote
Repo

Remote
Repo

push and pull

pull onlypull only

pull only

pull only

GUI

Local
Repo

Local
Repo

Local
Repo

Tom

John

HarryRemote
Repo

Remote
Repo

push and pull

pull onlypull only

pull only
pull onlyAmazing

Software

Amazing
Developer

push and pull

pull only

pull only

Ch14: Code Versioning

17

5 CENTRALIZED VERSUS DISTRIBUTED VERSION CONTROL SYSTEMS

5.1 CVCS

Advantages

Simple workflow. Since the workflow in a CVCS is linear, it is familiar to most people and easy
to get started with.

Implicit hierarchy. With a central repository, every contributor knows where to commit their
changes to and where to get the latest version of the code.

Disadvantages

Very few offline operations. Most of the operations in a CVCS such as commit, revert and
branch requires an Internet connection to the remote repository. As such, when you are on the
move, it becomes almost impossible to make use of your CVCS.

Inflexible organization. Due to the forced structure of a central repository, you have to adapt
the organization of your team to the CVCS, instead of the other way round.

Inefficient merging. Although CVCS come with branching and merging functions, most of the
CVCS are largely inefficient with merging since they do not keep track of where each change
came from.

5.2 DVCS

Advantages

The key advantages of a DVCS system are as follows:

Ability to work offline. Since most of the operations are performed on the local repository, with
the exception of pulling and pushing changes, a developer can literally work offline until he or
she is ready to share the code with others, or there is a need to retrieve code from others. This
means you can make full use of a DVCS while in the train or on the plane.

Local repository. With a local repository, common operations like revert, commit and branch
are faster since there is no need to depend on a possibly unstable Internet connection. In
addition, it is precisely the inclusion of a local repository that allows a user to work offline.

Branching and merging is easier. The way DVCS handle branching and merging is much more
efficient since they were built around sharing changes. Although different DVCS may have
different ways of handling changes, fundamentally, all of them are able to keep track of where
each change come from, making merging easier.

More flexibility in management. Since there is no implicit structure with DVCS, you can
structure your project to suit your needs.

Scales better with more people. With a DVCS, any new project members can clone your
existing remote repository and work off it, and you can decide whether to pull from them. There
is no need to give them permission to your existing repository.

Disadvantages

No “latest” version. Since there is no central location, you do not know which of your team
members has the latest version. This can be fixed by designating a central location that helps
clarify where the latest “stable” release is.

No universal revision numbers. Every repository has its own revision numbers depending on
the changes. Instead, people refer to change numbers, such as a1337bc, which are not elegant or
easy to remember. However, you can tag releases with meaningful names.

Software Development Tools and Technologies

18

6 ADVANCED TOPIC: BRANCHING AND MERGING

Each time we commit in Mercurial, it creates a new changeset. Mercurial assigns both a revision
number and a changeset ID to each changeset. Both these terms can be used interchangeably.
The important difference to note is that revision number should be used only within the local
repository, while changeset IDs are unique and should be used when pulling or pushing changes
across repositories. For example, after a commit and we run hg log, we might get the following:

changeset: 0:2ee237db8944

tag: tip

user: John Doe <johndoe@email.com>

date: Fri Apr 01 16:38:52 2011 +0800

summary: Added file

As we can see, from the part in bold, it is revision number 0 and the changeset ID is
2ee237db8944.

In addition, you should get familiar with the concept of head. A head is basically a changeset
with no children. A Mercurial repository can have multiple heads.

6.1 What is Branching?

Suppose you have been working on a project and decide to implement a radical new feature.
However, you do not want your new feature to introduce any bugs into your existing code. As a
result, you decide to make a copy of your current project and work on that copy instead, so that
your existing project remains safe. That copy, in essence, is a branch. A branch is essentially a
copy of project and thus it has a common history with the project. The act of creating a branch is
known as branching.

Another scenario when a branch is required is when you want to work on a separate set of
features for a team project. Suppose all the team members are working on a particular branch of
code, e.g. stable, and you will like to work without affecting their code. In this scenario, you will
create a branch based off stable, give it a name, e.g. experimental and work on it. This way, the
changes you make to experimental will have no effect on stable at all and vice versa.

VCS have support for branching and thus can create the copy when you require it to do so,
instead of you manually copying the folder. In addition, the VCS will know of the existence of the
branch and basically keeps a record of all branches within a project (repository).

6.2 What is Merging?

Suppose you are in the first scenario in Section 6.1 and you have finished implementing and
testing your radical new feature. At the same time, you have made some changes to your
original project. You would like to have the new features in your original project. Manually, you
will have to copy the code from one project to another. VCS come with a feature known as
merging, which attempts to find out the differences among files and apply them to the file you
want.

6.3 Branching and Merging in Mercurial

Different VCS handles branching differently. We will be taking a look at how branching is
handled in Mercurial. In essence, Mercurial is able to handle branching in four different ways.
The main purpose is to illustrate the different branching concepts.

1. Clones

2. Bookmarks

3. Named Branches

Ch14: Code Versioning

19

4. Anonymous Branches

6.3.1 Clones

Cloning is one way in which a branch can be created. Cloning can be done as follows:

hg clone <REPO> <BRANCH>

where <REPO> is the folder containing the original project and <BRANCH> is the name of the new
folder which will become the branch. Once done, we will have two identical copies of the
repository.

Figure 17: Branching with clones

In Figure 17, we can see that test-feature was created when test was at Revision 2. At this
point of time, both test and test-feature are identical. Subsequently, some bugs were fixed in
test while experimental code was added to test-feature. They are no longer identical after
these modifications.

In order to merge changes in from one branch to another, we make use of either pushing or
pulling to move changes from one branch to another, as we would if we wanted to share
changes when working in a team.

Advantages

 Safest way of creating a branch. The branches, being separate repositories, are

completely isolated, so what you do in one branch will not affect the other branch, until

you push or pull.

 Deleting a branch is as simple as deleting the repository folder.

Disadvantages

 Slower than the other methods, since creating a branch by cloning literally means

copying the current repository.

 To share the branches, they would have to be published as separate repositories. Thus,

team members who are interested in all your branches will have to clone all your

repositories. This is wasteful as well, since some if not most of the code in these separate

repositories will be common.

Sidenote: The Mercurial development team themselves use this form of branching.

Revision 0
Initial Commit

Revision 1
Added more code

Revision 2
Formatted code

test-featuretest

Revision 0
Initial Commit

Revision 1
Added more code

Revision 2
Formatted code

Revision 3
Fixed some bugs

Revision 3
Experimental code

hg clone test test-feature

!=

=

Software Development Tools and Technologies

20

6.3.2 Bookmarks

Bookmarks are another way to do branching in Mercurial. The command to do that is:

hg bookmark <NAME>

to create a bookmark at the current revision, or:

hg bookmark -r <REV> <NAME>

to create a bookmark at a specific revision. By default, when multiple bookmarks point to the
same changeset, they will all move forward together. It is possible to configure Mercurial to only
track and update the currently active bookmark by adding the following lines in Mercurial’s
configuration file:

[bookmarks]

track.current = True

Once done, a bookmark that points to current or specified revision will be created. Bookmarks
are essentially pointers to commits and are automatically updated when new commits are made.
They are similar to tags, but bookmarks move along with changes whereas a tag is fixed to the
specific revision.

Figure 18: Branching with bookmarks

In Figure 18, upon running the two commands hg bookmark main and hg bookmark branch,
two bookmarks are created. At this point in time both bookmarks are pointing to the same
revision. To switch between bookmarks, we use the hg update command. For example, to
switch to the feature branch, we will execute hg update feature. Following the branch switch,
a commit was made. This commit belongs only to feature and not to main.

To merge changes using bookmarks, we first have to switch to the branch we want the changes
to be merged into. For example, if we wanted to merge in the changes from feature to main, we
will do the following:

hg update main

hg merge feature

hg commit –m “Merged changes from feature branch”

The above set of commands basically switches to the branch main, merges the changes from
feature into main and finally commits the changes. For more information on bookmarks, see
http://mercurial.selenic.com/wiki/BookmarksExtension.

test

Revision 0
Initial Commit

Revision 1
Added more code

Revision 2
Formatted code

Revision 4
Danger

featuremain

hg bookmark main
hg bookmark feature

feature

main

http://mercurial.selenic.com/wiki/BookmarksExtension

Ch14: Code Versioning

21

Advantages

 Fast and lightweight (compared to cloning)

 Bookmarks are easily deleted

Disadvantages

 Once a bookmark is deleted, there is no longer any history of it. Giving your commits a

proper commit message will ensure that a history of it is kept when you merge in

changes from a bookmark to another.

6.3.3 Named Branches

The third way of creating a branch in Mercurial is via the form of named branches. The
command to do so in Mercurial is:

hg branch <NAME>

Whenever a commit is made, it will be on the same branch as its parent, unless hg branch
<NAME> is used before the commit so that the commit goes to the specified branch.

Figure 19: Branching with named branches

Although the named branches diagram (Figure 19) looks similar to that of bookmarks (Figure
18), it is important to note the following differences:

 The branch name is permanently recorded as part of the revision’s metadata as seen in

Revision 4 in Figure 19. This is unlike a bookmark where no reference to the bookmark

can be seen in the metadata.

 These branches do not actually exist as a physical file on the disk, unlike a bookmark.

When we request to switch to and use a branch, Mercurial calculates the revision on the

fly.

In addition, the default branch in Mercurial is named default. Switching between branches is
fast since named branches are just some extra metadata made on a commit. The time it takes to
switch between branches is determined by the difference between them. In addition, you can
tell which branch a commit was made, since the branch name is part of the commit’s metadata.
For example, running hg log on after a commit on branch feature is done will give us the
following:

test

Revision 0
Initial Commit

Revision 1
Added more code

Revision 2
Formatted code

Revision 4
Danger
Branch: feature

featuredefault

Software Development Tools and Technologies

22

changeset: 0:2ee237db8944

branch: feature

user: John Doe <johndoe@email.com>

date: Fri Apr 01 16:38:52 2011 +0800

summary: Added file

As we can see, the branch name is a part of the commit’s metadata. However, this means you
cannot really delete branches, since the branch is technically just part of a commit’s metadata.
You cannot rename a branch as well and everyone who has used that commit of yours will have
the same branch name as the one you specified. Altering or deleting a branch will mean altering
older commits and thus is not doable. Branches can be marked as closed to indicate to Mercurial
that these branches are no longer being worked on. To switch between branches, we make use
of the hg update <NAME> command again. Similarly, to merge in changes, we first switch to the
branch we want the changes to be merged into. For example, if we made some changes to
feature, and would like to now merge the changes into default, we will do the following:

hg update default

hg merge feature

hg commit –m “Merged changes from feature branch”

Please see http://mercurial.selenic.com/wiki/Branch and
http://mercurial.selenic.com/wiki/NamedBranches for more information on named branches
in Mercurial.

Advantages

 Every revision on a branch has the branch name as part of its metadata. Useful for

logging purposes.

 Easy and fast to switch between branches.

Disadvantages

 It is against the conventional idea of branches. From Mercurial themselves, “The term

branch is sometimes used for slightly different concepts. This may be confusing for new

users of Mercurial.”

 Branches cannot be deleted.

6.3.4 Anonymous Branches

Anonymous branches are basically branches without names. They are basically heads in the
Mercurial repository. You refer to the branches by revision number or changeset ID. This
method works the best for short-lived branches, where you know that the branch will be
integrated into the main development trunk very soon.

The concept of anonymous branches is best explained with a practical example. Suppose you
have a new repository and you just added a new file Hello.txt which contains the line “Hello”.
After that, you decide to add and commit the file to your repository. Running hg log may result
in the following:

changeset: 0:caba3ec1541b

tag: tip

user: John Doe <johndoe@email.com>

date: Wed Apr 06 18:51:50 2011 +0800

summary: Added Hello.txt

http://mercurial.selenic.com/wiki/Branch
http://mercurial.selenic.com/wiki/NamedBranches

Ch14: Code Versioning

23

Next, you make some changes to Hello.txt, perhaps you added the line “World” and perform
another commit. hg log may now show the following:

changeset: 1:a814a8d50cf4

tag: tip

user: John Doe <johndoe@email.com>

date: Wed Apr 06 18:54:12 2011 +0800

summary: Added line World

changeset: 0:caba3ec1541b

user: John Doe <johndoe@email.com>

date: Wed Apr 06 18:51:50 2011 +0800

summary: Added Hello.txt

This is where it gets interesting. Suppose you want a branch that shows “Earth” instead of
“World”. You can perform hg update –r 0 to switch to your very first commit, added in “Earth”
and then commit. hg log will now show the following:

changeset: 2:1a5bc64dc907

tag: tip

parent: 0:caba3ec1541b

user: John Doe <johndoe@email.com>

date: Wed Apr 06 18:57:31 2011 +0800

summary: Added line Earth

changeset: 1:a814a8d50cf4

user: John Doe <johndoe@email.com>

date: Wed Apr 06 18:54:12 2011 +0800

summary: Added line World

changeset: 0:caba3ec1541b

user: John Doe <johndoe@email.com>

date: Wed Apr 06 18:51:50 2011 +0800

summary: Added Hello.txt

Running hg heads gives the following output:

changeset: 2:1a5bc64dc907

tag: tip

parent: 0:caba3ec1541b

user: John Doe <johndoe@email.com>

date: Wed Apr 06 18:57:31 2011 +0800

summary: Added line Earth

Software Development Tools and Technologies

24

changeset: 1:a814a8d50cf4

user: John Doe <johndoe@email.com>

date: Wed Apr 06 18:54:12 2011 +0800

summary: Added line World

We have arrived at a situation where there are two heads and they are basically anonymous
branches. To switch between them, we have to specify hg update –r <N>, where N can be the
revision number or the changeset ID. Similar to named branches, if we want to merge in changes,
we first have to switch to the branch we want the changes to be merged into. An example would
be as follows:

hg update –r 1

hg merge –r 2

hg commit –m “Merged in changes”

Advantages

 Fastest and easiest way to branch. There is no need for any naming of the branch and no

need to delete the branch when you are done.

 Most suitable for short-lived feature branches that will not leave your local repository.

Disadvantages

 Since there is no descriptive name for the branch, good commit messages will have to be

written.

 Anonymous branches are referred to only by their revision and changeset numbers.

Thus, you will have to use hg log to find out the respective numbers each time you want

to switch branches.

7 CONCLUSION

As we have seen, each of the different systems comes with their own advantages and
disadvantages. The choice of which VCS to use largely depends on your needs. For example, if
you are new to VCS and would like to put a simple project on it, a CVCS will be perfectly suitable
for your needs. The workflow is simple to get used to and with a small project, the implicit
hierarchy might be a good advantage.

On the other hand, if you need a lot of flexibility in management, you might want to use a DVCS
instead. A strong advantage of DVCS is the inclusion of a local repository, which also leads to the
ability to work offline. In fact, some detractors of DVCS are convinced that it is not so much the
distributed part of DVCS but the ability to work offline that is attractive. It is also important to
note that it is possible to model a DVCS to behave like a CVCS, as seen with the shared push
model (see Section 4.4.2), but not the other way round.

“The slogan of Subversion for a while was „CVS done right‟ or something like that and if you

start with that kind of slogan, there's nowhere you can go. There is no way to do CVS right.”

– Linus Torvalds

Ch14: Code Versioning

25

With the huge number of proponents behind DVCS nowadays, including prominent people like
Linus Torvalds, we are inclined to say that DVCS is better. However, the truth is, using any form
of Version Control System is better than not using it at all. Even the older CVCS will help you
to keep track of your file changes, allowing you to focus on developing your software.

For ‘getting started’ resources, see http://sites.google.com/site/cs4217jan2011team7/

8 BIBLIOGRAPHY

A Visual Guide to Version Control. http://betterexplained.com/articles/a-visual-guide-to-
version-control/ (accessed 24 January, 2011).

Amit Bahree, Dennis Mulder, Shawn Cicoria, Chris Peiris, Nishith Pathak. Pro WCF: Practical
Microsoft SOA Implementation [Paperback]. Apress, 2007.

Chappell, David. Introducing Windows Communication Foundation in .NET Framework 4. March,
2010. http://msdn.microsoft.com/library/ee958158.aspx (accessed 9 March, 2011).

Corporation, Oracle. The Java EE 5 Tutorial.
http://download.oracle.com/javaee/5/tutorial/doc/bnazq.html (accessed 10 March, 2011).

Eichengreen, Barry. One Economy, Ready or Not: Thomas Friedman's Jaunt Through Globalization.
May/June, 1999. http://www.foreignaffairs.com/articles/55017/barry-eichengreen/one-
economy-ready-or-not-thomas-friedman-s-jaunt-through-globaliz (accessed 6 March, 2011).

Erl, Thomas. SOA Principles of Service Design. Prentice Hall, 2007.

Goncalves, Antonio. Beginning Java(TM) EE 6 with GlassFish(TM) 3: From Novice to Professional.
Apress, Inc., 2009.

Hårsman, J. Choosing to branch in Mercurial. 13 October, 2010.
http://ghostinthecode.posterous.com/choosing-how-to-branch-in-mercurial (accessed 25
March, 2011).

Hewitt, Eben. Java SOA Cookbook. O’Reilly Media, 2009.

Intro to Distributed Version Control (Illustrated). http://betterexplained.com/articles/intro-to-
distributed-version-control-illustrated/ (accessed 24 January, 2011).

Jane Laudon, Kenneth Laudon. Essentials of Management Information Systems. Prentice Hall,
2007.

Judith Hurwitz, Robin Bloor, Carol Baroudi, Marcia Kaufman. Service Oriented Architecture for
Dummies. Wiley Publishing, Inc., 2007.

Kalin, Martin. Java Web Services: Up and Running. O'Reilly Media, Inc., 2009.

Klein, Scott. Professional WCF Programming: .NET Development with the Windows
Communication Foundation. John Wiley & Sons, 2007.

Losh, S. A Guide to Branching in Mercurial. 30 August, 2009.
http://stevelosh.com/blog/2009/08/a-guide-to-branching-in-mercurial/ (accessed 18 March,
2011).

http://sites.google.com/site/cs4217jan2011team7/

